997 resultados para DNA template


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eighteen-nanometer gold and 3.5-nm silver colloidal particles closely packed by cetyltrimethylammonium bromide (CTAB) to form its positively charged shell. The DNA network was formed on a mica Substrate firstly. Later, CTAB-capped gold or silver colloidal solutions were cast onto DNA network surface. It was found that the gold or silver nanoparticles metallized networks were formed owing to the electrostatic-driven template assembling of positive charge of CTAB-capped gold and silver particles on the negatively charged phosphate groups of DNA Molecules by the characterizations of AFM, XPS and UV-vis. This method may provide a novel and simple way to studying nanoparticles assembly conjugating DNA molecules and offer some potential promising applications in nanocatalysis, nanoelectronics, and nanosensor on the basis of the fabricated metal nanoparticles network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed monolayer films of octadecylamine (ODA) and oligo-DNA were prepared by Langmuir-Blodgett technique and the monolayer films were used as template to direct the formation of different CdS nanostructures. It was found that CdS nanowire was observed when the monolayer film prepared at low surface pressure was used as template, and aggregate of CdS spheres was obtained when the monolayer film deposited at high surface pressure was used as template.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde is produced in most living systems and is present in the environment. Evidence that formaldehyde causes cancer in experimental animals infers that it may be a carcinogenic hazard to humans. Formaldehyde reacts with the exocyclic amino group of deoxyguanosine, resulting in the formation of N2-methyl-2′-deoxyguanosine (N2-Me-dG) via reduction of the Schiff base. The same reaction is likely to occur in living cells, because cells contain endogenous reductants such as ascorbic acid and gluthathione. To explore the miscoding properties of formaldehyde-derived DNA adducts a site-specifically modified oligodeoxynucleotide containing a N2-Me-dG was prepared and used as the template in primer extension reactions catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I. The primer extension reaction was slightly stalled one base before the N2-Me-dG lesion, but DNA synthesis past this lesion was readily completed. The fully extended products were analyzed to quantify the miscoding specificities of N2-Me-dG. Preferential incorporation of dCMP, the correct base, opposite the lesion was observed, along with small amounts of misincorporation of dTMP (9.4%). No deletions were detected. Steady-state kinetic studies indicated that the frequency of nucleotide insertion for dTMP was only 1.2 times lower than for dCMP and the frequency of chain extension from the 3′-terminus of a dT:N2-Me-dG pair was only 2.1 times lower than from a dC:N2-Me-dG pair. We conclude that N2-Me-dG is a miscoding lesion capable of generating G→A transition mutations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silk gland cells ofBombyx mori undergo chromosomal endoduplication throughout larval development. The DNA content of both posterior and middle silk gland nuclei increased by 300000 times the haploid genomic content, amounting to 18 rounds of replication. The DNA doubling time is approximately 48 h and 24 h during the fourth and fifth instars of larval development. However, DNA content does not change during the interim moult. Concomitant with DNA content, DNA polymerase activity also increases as development progressed. Enzyme activity is predominantly due to DNA polymerase with no detectable level of polymerase . DNA polymerase from silk gland extracts was purified to homogeneity (using a series of columns involving ionexchange, gel-filtration and affintiy chromatography), resulting in a 4000-fold increase in specific activity. The enzyme is a heterogeneous multimer of high molecular mass, and the catalytic (polymerase) activity is resident in the 180-kDa subunit. The enzyme shows a PI of 6.2 and theKm values for the dNTP vary over 5-16 . The polymerase is tightly associated with primase activity and initiates primer synthesis in the presence of ribonucleoside triphosphates on a single-stranded DNA template. The primase activity is resident in the 45-kDa subunit. The enzyme is devoid of any detectable exonuclease activity. The abundance of DNA polymerase α in silk glands and its strong association with the nuclear matrix suggest a role in the DNA endoduplication process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biomolecule template gives new opportunities for the fabrication of novel materials with special features. Here we report a route to the formation of DNA-polyaniline (PAn) complex, using immobilized DNA as a template. A gold electrode was first modified with monolayer of 2-aminoethanethiol by self-assembly. Thereafter, by simply immersing the gold electrode into DNA solution, DNA molecules can be attached onto the gold surface, followed by the DNA-templated assembly and electropolymerization of protonated aniline. The electrostatic interactions between DNA and aniline can keep the aniline monomers aligning along the DNA strands. Investigations by surface plasmon resonance (SPR), electrochemistry and reflection absorption UV/Vis-Near IR spectroscopy substantially convince that PAn can be electrochemically grown around DNA template on gold surface. This work may be provides fundamental aspects for building PAn nanowires with DNA as template on solid surface if DNA molecules can be individually separated and stretched.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important area of recent research in forensic entomology has been the use of insect DNA to provide identification of insects for fast and accurate estimation of time since death. This requires DNA to be extracted efficiently and in a state suitable for use in molecular procedures, and then stored on a long-term basis. In this study, Whatman FTA™ cards were tested for use with the Calliphoridae (Diptera). In particular, testing examined their ability to effectively extract DNA from specimens, and store and provide DNA template in a suitable condition for amplification using the polymerase chain reaction (PCR). The cards provided DNA that was able to be amplified from a variety of life stages, and thus appears to be of sufficient quality and quantity for use in subsequent procedures. FTA cards therefore appear suitable for use with calliphorids, and provide a new method of extraction that is simple and efficient and allows for storage and transportation without refrigeration, consequently simplifying the handling of DNA in forensic entomological cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gossypol, a binaphthalene compound, possesses male infertility effects. However, its mechanism of action and effects on somatic cells are not yet understood. The purpose of this study was to examine the effects of gossypol on mammalian cell growth and DNA replication, using tissue culture cells (HeLa) as an in vivo model.^ Gossypol inhibited DNA synthesis in HeLa cells at low doses, without affecting RNA or protein synthesis. This caused cells to accumulate in S phase without affecting cells in other phases of the cell cycle. The inhibition of DNA synthesis was both dose- and time-dependent. This irreversible block was associated with a decrease in HeLa plating efficiency. Gossypol did bind to DNA but did not measurably affect its ability to serve as a template for DNA polymerase $\alpha$, the major replicative enzyme. Only in the absence of serum could gossypol induce single-strand DNA breaks in HeLa cells; no DNA-DNA or DNA-protein crosslinks were formed.^ Gossypol exhibited dose-dependent inhibition of a number of eukaryotic and prokaryotic replicative DNA polymerases both in vitro and in vivo. This inhibition was kinetically non-competitive with respect to the DNA template and dNTP substrates. Both a filter binding assay and polyacrylamide gel electrophoresis were used to study gossypol binding to DNA polymerase. Inhibition resulted from drug binding to two adjacent amino acid residues on the enzyme. Binding was found to be irreversible and mediated through either non-covalent interactions or by Schiff's base formation between the aldehyde groups of gossypol and the $\varepsilon$-NH$\sb2$ groups of amino acid residues on the polymerase. Structure-function studies using eleven gossypol derivatives revealed that both aldehyde and hydroxyl groups function independently to effect inhibition of DNA polymerase and DNA replication. The activities of DNA polymerase $\beta$ and ribonucleotide reductase were also inhibited by increasing gossypol concentrations.^ These studies demonstrate that the gossypol-mediated inhibition of DNA replication is due in part to inhibition of key replicative enzymes, such as DNA polymerase $\alpha$. The study of DNA polymerase may serve as a model for the interaction of enzymes with gossypol, a drug which may prove useful as a chemotherapeutic agent. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

HIV-1 reverse transcriptase (RT) catalyzes the synthesis of DNA from DNA or RNA templates. During this process, it must transfer its primer from one template to another RNA or DNA template. Binary complexes made of RT and a primer/template bind an additional single-stranded RNA molecule of the same nucleotide sequence as that of the DNA or RNA template. The additional RNA strand leads to a 10-fold decrease of the off-rate constant, koff, of RT from a primer/DNA template. In a binary complex of RT and a primer/template, the primer can be cross-linked to both the p66 and p51 subunits. Depending on the location of the photoreactive group in the primer, the distribution of the cross-linked primers between subunits is dependent on the nature of the template and of the additional single-stranded molecule. Greater cross-linking of the primer to p51 occurs with DNA templates, whereas cross-linking to p66 predominates with RNA templates. Excess single-stranded DNA shifts the distribution of cross-linking from p66 to p51 with RNA templates, and excess single-stranded RNA shifts the cross-linking from p51 to p66 with DNA templates. RT thus uses two primer/template binding modes depending on the nature of the template.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

NtrC (nitrogen regulatory protein C) is a bacterial enhancer-binding protein of 469 residues that activates transcription by σ54-holoenzyme. A region of its transcriptional activation (central) domain that is highly conserved among homologous activators of σ54-holoenzyme—residues 206–220—is essential for interaction with this RNA polymerase: it is required for contact with the polymerase and/or for coupling the energy from ATP hydrolysis to a change in the conformation of the polymerase that allows it to form transcriptionally productive open complexes. Several mutant NtrC proteins with amino acid substitutions in this region, including NtrCA216V and NtrCG219K, have normal ATPase activity but fail in transcriptional activation. We now report that other mutant forms carrying amino acid substitutions at these same positions, NtrCA216C and NtrCG219C, are capable of activating transcription when they are not bound to a DNA template (non-DNA-binding derivatives with an altered helix–turn–helix DNA-binding motif at the C terminus of the protein) but are unable to do so when they are bound to a DNA template, whether or not it carries a specific enhancer. Enhancer DNA remains a positive allosteric effector of ATP hydrolysis, as it is for wild-type NtrC but, surprisingly, appears to have become a negative allosteric effector for some aspect of interaction with σ54-holoenzyme. The conserved region in which these amino acid substitutions occur (206–220) is equivalent to the Switch I region of a large group of purine nucleotide-binding proteins. Interesting analogies can be drawn between the Switch I region of NtrC and that of p21ras.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although three human genes encoding DNA ligases have been isolated, the molecular mechanisms by which these gene products specifically participate in different DNA transactions are not well understood. In this study, fractionation of a HeLa nuclear extract by DNA ligase I affinity chromatography resulted in the specific retention of a replication protein, proliferating cell nuclear antigen (PCNA), by the affinity resin. Subsequent experiments demonstrated that DNA ligase I and PCNA interact directly via the amino-terminal 118 aa of DNA ligase I, the same region of DNA ligase I that is required for localization of this enzyme at replication foci during S phase. PCNA, which forms a sliding clamp around duplex DNA, interacts with DNA pol δ and enables this enzyme to synthesize DNA processively. An interaction between DNA ligase I and PCNA that is topologically linked to DNA was detected. However, DNA ligase I inhibited PCNA-dependent DNA synthesis by DNA pol δ. These observations suggest that a ternary complex of DNA ligase I, PCNA and DNA pol δ does not form on a gapped DNA template. Consistent with this idea, the cell cycle inhibitor p21, which also interacts with PCNA and inhibits processive DNA synthesis by DNA pol δ, disrupts the DNA ligase I–PCNA complex. Thus, we propose that after Okazaki fragment DNA synthesis is completed by a PCNA–DNA pol δ complex, DNA pol δ is released, allowing DNA ligase I to bind to PCNA at the nick between adjacent Okazaki fragments and catalyze phosphodiester bond formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report automated DNA sequencing in 16-channel microchips. A microchip prefilled with sieving matrix is aligned on a heating plate affixed to a movable platform. Samples are loaded into sample reservoirs by using an eight-tip pipetting device, and the chip is docked with an array of electrodes in the focal plane of a four-color scanning detection system. Under computer control, high voltage is applied to the appropriate reservoirs in a programmed sequence that injects and separates the DNA samples. An integrated four-color confocal fluorescent detector automatically scans all 16 channels. The system routinely yields more than 450 bases in 15 min in all 16 channels. In the best case using an automated base-calling program, 543 bases have been called at an accuracy of >99%. Separations, including automated chip loading and sample injection, normally are completed in less than 18 min. The advantages of DNA sequencing on capillary electrophoresis chips include uniform signal intensity and tolerance of high DNA template concentration. To understand the fundamentals of these unique features we developed a theoretical treatment of cross-channel chip injection that we call the differential concentration effect. We present experimental evidence consistent with the predictions of the theory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a coupled helicase–polymerase DNA unwinding assay and have used it to monitor the rate of double-stranded DNA unwinding catalyzed by the phage T4 DNA replication helicase (gp41). This procedure can be used to follow helicase activity in subpopulations in systems in which the unwinding-synthesis reaction is not synchronized on all the substrate-template molecules. We show that T4 replication helicase (gp41) and polymerase (gp43) can be assembled onto a loading site located near the end of a long double-stranded DNA template in the presence of a macromolecular crowding agent, and that this coupled “two-protein” system can carry out ATP-dependent strand displacement DNA synthesis at physiological rates (400 to 500 bp per sec) and with high processivity in the absence of other T4 DNA replication proteins. These results suggest that a direct helicase–polymerase interaction may be central to fast and processive double-stranded DNA replication, and lead us to reconsider the roles of the other replication proteins in processivity control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.